INTER-SUBJECT SCALING:
AN INTRODUCTION

JULY 2018
SETTING THE SCENE

The year is 1912. And the location is Stockholm, Sweden. The occasion? The Summer Olympics and the introduction of the modern pentathlon. It was comprised of pistol shooting, fencing, swimming, horse riding and running. As its sponsor Baron de Coubertin stated, this new event would test “a man’s moral qualities as much as his physical resources and skills, producing thereby a complete athlete.”

A prominent aspect of the modern pentathlon is the point scoring system. Each competitor is awarded a certain number of points based on their performance in each of the five events. The gold medallist is the competitor with the highest point total at the end of the five events. Because each competitor is competing in exactly the same five events, the raw scores from each event can simply be added together to provide a final score.

BUT...

What if the Olympic competitors were able to select five events to compete in from a list of 60 possible events - with some of the events more challenging than others? Would it be fair if each competitor’s raw scores in each event were added together and the highest point total used to determine the gold medallist, regardless of whether the sport was fencing, shotput or swimming?

It may be SIMPLE to add five raw scores together to produce a final score, but it wouldn’t be FAIR to do so, as not all sporting events are equal, with some events more challenging than others. Competitors would simply enter the five easiest sports to maximise their points tally. The same logic could be applied to senior school subjects. If subject scores were simply added together and used for tertiary entrance, it would make sense to only take what are perceived to be the ‘easiest’ subjects.

This is not how parents, schools, universities or the wider education sector wishes to see students achieve academically, which is why QTAC will use scaling as part of the ATAR calculation process in 2020.
MEET CHRIS AND MIA...

Chris is taking General Mathematics. He is planning on studying International Relations and is also taking English, Chinese and Spanish. Chris has achieved a result at the end of Year 12 of 82/100 for General Mathematics.

Mia is taking Specialist Mathematics. She is also taking Mathematical Methods, Biology and Chemistry and wants to study Biomedicine at uni and work as a medical researcher. At the end of Year 12, Mia has secured a result of 82/100 for Specialist Mathematics.

THE QUESTION...

In the wider picture of progressing on with tertiary study, is Chris's mark of 82 in General Mathematics the same as Mia's mark of 82 in Specialist Mathematics?

We know that Specialist Mathematics is academically more challenging, so instinctively the answer is no. However, when it comes to calculating ATARs, how do we equitably compare Chris's result with Mia's result? The answer is through scaling.
SOME TECHNICAL DEFINITIONS

To get your head around scaling, there are a few technical terms that need to be expanded upon as they may arise during our discussion (and you’ll sound like a real pro when you discuss this with others).

Iterative Process
A process that continues many times. In the context of scaling it is a process that refines the already scaled scores into more refined scaled scores. The objective of an iterative process is to bring you closer to the desired result as you repeat each cycle of iteration. An example of an iterative process is when a jury examines evidence and scenarios several times to come closer to a resolution.

Polyscore
A combined result of subject scaled scores. In the context of scaling, it is the student’s best five scaled subject results.

Quantile
Quantiles are a set of values dividing a frequency distribution into equal groups, each containing the same fraction of the total population. Quantiles are also called quartiles when you divide a distribution into four groups, or deciles when you divide the distribution in ten groups, or percentiles when you divide a distribution into a hundred groups. The most well known quantile is the median, which is the value that divides the population into two equal sized groups. The median is also equivalent to the 2nd quartile, the 5th decile, and the 50th percentile.

Raw Subject Result
The subject result achieved by a student. For General subjects or General Extension subjects, students will be provided with a result out of 100 and a level of achievement grade (A to E). For Applied subjects, students will be provided with a letter grade (A to E) only.

Scaled Subject Result
The subject result which has been transformed from the raw subject result via the scaling process. A student’s raw subject result in English might be 50 out of 100, and the students eventual scaled result may be 53 out of 100.

Scaling
The process by which raw subject results are adjusted for a given subject to allow the results for that subject to be fairly compared with the results from any other subject when calculating ATARs.

So why do we need to scale?
THE NEED TO SCALE

Every subject offered at senior level in Queensland schools is unique. Each one has its own syllabus objectives and assessment criteria. Each subject assesses different knowledge and skill sets. Students’ performance varies across different subjects and the range of results achieved can be significantly different from the results that students achieved in another subject. This means that a straight comparison of raw subject scores can be misleading.

In this fictional example, Chemistry and Geography have different distributions, however one of the two has a higher proportion of students achieving high results (Geography). This means that achieving a result of 90 out of 100 in Geography is easier than achieving a result of 90 out of 100 in Chemistry (or at least this is what emerges from students’ raw results in the two subjects). So, the question is, how to translate a result of 90 in Geography into an equivalent mark in Chemistry?

The answer for this comparison between two subjects is simple. For students who have studied both Chemistry and Geography, use the quantiles of the distribution. Quantiles are a location index that can help you to map one distribution onto the other, by inferring what raw result in Chemistry would be equivalent to a certain raw result in Geography.

For instance, if you know that 50% of students achieved a score lower than 69 in Geography, and 50% of students achieved a score lower than 61 in Chemistry you would be able to conclude that a result of 69 in Geography is comparable with a result of 61 in Chemistry.

This correspondence can be used to form a hundred equally sized groups (rather than two). The idea is that the percentiles can be used to represent both subject results on a common scale. The value of each percentile can be seen as a transformed result or a scaled result.
MEET DOMINIC AND SASHA

They are good friends and attend the same school. They are both studying (amongst other subjects), Geography and Chemistry. Here are their raw subject marks.

<table>
<thead>
<tr>
<th></th>
<th>DOMINIC</th>
<th>SASHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOGRAPHY</td>
<td>90</td>
<td>85</td>
</tr>
<tr>
<td>CHEMISTRY</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

We can assume that Dominic's raw Geography result of 90 is better than Sasha’s Geography raw result of 85. We can also assume that Sasha's result of 90 in Chemistry is better than Dominic's result of 80.

However we cannot assume that subject results of 90 in different subjects are comparable. Similarly we cannot assume that Dominic's result of 90 in Geography is better than Sasha's result of 90 in Chemistry.

In Chemistry, Sasha’s 90 could be an above average result, whilst Dominic's 90 in Geography could be a below average result. Scaling the subjects will enable the raw subject results to be adjusted for a given subject to allow the results for that subject to be fairly compared with the results of any other subject.
Using the subject results' distributions, these raw results could be transformed into
the following scaled results:

<table>
<thead>
<tr>
<th>Scaled DOMINIC</th>
<th>Scaled SASHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOGRAPHY</td>
<td>92</td>
</tr>
<tr>
<td>CHEMISTRY</td>
<td>82</td>
</tr>
</tbody>
</table>

Using scaled results makes immediately evident that Sasha’s 90 in Chemistry is worth more
than Dominic’s 90 in Geography. What remains unaltered is that Dominic’s Geography raw subject result is always higher than Sasha’s,
and Sasha’s Chemistry raw subject result is always higher than Dominic’s.

This idea to compare subject results can be extended to all subjects studied by students. As it will be described in the next section, it can also be applied to scaled subject results, obtaining a set of scaled results of scaled results, and then it can be done again, obtaining a set of scaled results of scaled results of scaled results, etc.
THE 'HOW' OF SCALING

Since the introduction of the OP in 1992, a common scaling test – the Queensland Core Skills (QCS) Test has been used to scale Year 12 results. However, with the introduction of the ATAR as the standard measure for tertiary entrance in Queensland from 2020, the QCS Test will be discontinued. In the absence of this common scaling test, Queensland will use inter-subject scaling, a process which is used in other Australian states and territories.

The first step is to compare subject results to determine the relative position of one student against the relative position of another student. In order to see this in action, let’s continue with Dominic and Sasha and their subjects.

Let’s say Dominic has a raw subject mark of 81 in English. This tells us that Dominic got 81 marks out of a possible 100 and it also tells us where Dominic sits in relation to the other English students. But it doesn’t directly let us compare Dominic’s English result with results from other subjects.

To work out if Dominic’s raw subject result of 81 in English is comparable to say, Sasha’s raw subject result of 85 in Ancient History (a subject Dominic didn’t take), we need to work out the percentile ranks for all possible subject results, including Dominic’s and Sasha’s results. This can be done from the students’ raw results, as shown in the previous example.

However, the algorithm used in subject scaling makes use of subject scores rather than subject raw results. Subject scores are the first step in the process. The reason why they are used is that they represent a better starting point to scale subject results, in the logic of the iteration that takes place in the algorithm.

Once the first subject scores are calculated, it is possible to infer the percentile ranks of those scores. These outputs will be able to tell us that Sasha’s subject result of 85 in Ancient History is comparable to a provisional scaled result of 74, and that Dominic’s subject result of 81 in English is comparable to a provisional scaled result of 83. This process is repeated for all students.
Once the first set of scaled scores are available for each subject, it is possible to infer the overall performance (or polyscore) of each student by averaging the scaled results of each subject they took.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Dominic Raw</th>
<th>Dominic Scaled</th>
<th>Sasha Raw</th>
<th>Sasha Scaled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geography</td>
<td>90</td>
<td>92</td>
<td>85</td>
<td>84</td>
</tr>
<tr>
<td>Chemistry</td>
<td>80</td>
<td>82</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Mathematical Methods</td>
<td>75</td>
<td>82</td>
<td>72</td>
<td>78</td>
</tr>
<tr>
<td>English</td>
<td>81</td>
<td>83</td>
<td>82</td>
<td>84</td>
</tr>
<tr>
<td>Ancient History</td>
<td></td>
<td></td>
<td>85</td>
<td>74</td>
</tr>
<tr>
<td>Biology</td>
<td>40</td>
<td>45</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Legal Studies</td>
<td>65</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (Polyscore)</td>
<td></td>
<td>74.5</td>
<td></td>
<td>76.7</td>
</tr>
</tbody>
</table>

This first estimate of polyscore is used to refine the estimates for the subject scaled results. New estimates are calculated by averaging all the students' polyscores for a given subject and result.

<table>
<thead>
<tr>
<th>Biology Raw Results</th>
<th>Students</th>
<th>New Scaled Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>40</td>
<td>Dominic, Sasha, and all the other students with a raw result of 40 in Biology</td>
<td>Average the following: 74.5, 76.7, ...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Achievement of students in their other subjects influences how a particular subject scales.

For example, if English & Literature Extension is taken by students across Queensland who achieve highly in their other subjects, then English & Literature Extension will 'scale well'.

New scaled results are used to re-calculate students’ averages, which are then used to re-calculate subject scaled results, which are then used to re-calculate students’ averages, etc. Scaling continues iteratively (see, understanding the technical terms is paying off!) until the estimates stabilise.

...and on it goes until the students' polyscores are stable.

...then the scaled subject values are re-estimated...

The first set of values are estimated (the scaled subject values)...

... then students' polyscores are estimated...

... then students' polyscores are re-estimated...

...then the scaled subject values are re-estimated...
This process does not change a student’s raw subject result, nor does it change their ranking relative to other students in that subject. All scaling does is allow for the comparison of performances across all subjects.

So how did Dominic and Sasha end up after the scaling process?
You can see from the table on page eight that from the first cycle of scaling, that Dominic’s raw subject result of 81 in English scaled to 83, and that Sasha’s raw subject result of 85 in Ancient History scaled to 74.

But once the iterative process of scaling over many cycles has occurred, Dominic’s raw subject result of 81 in English finally scaled to 84 and Sasha’s raw subject result in Ancient History finally scaled to 76.

RECAP AND SOME FINAL POINTS ABOUT SCALING...

In the ATAR calculation process, scaling is the most difficult part to understand. It is however, a necessary part of the process to ensure fairness.

Scaling is a process by which raw subject results are adjusted for a given subject to allow the results for that subject to be fairly compared with the results from any other subject when calculating ATARs.

The scaling process will adjust the raw results in each subject to take account of how strong students are in their subjects and how difficult it is to achieve a result in the subject relative to achievements in other subjects.

Scaling outcomes for individual subjects are not predetermined and are expected to be different from one year to the next based on the performance of the student cohort for each year. Although trends will form, school, students and parents are advised not to use historical scaling data to predict future outcomes.
RECAP AND SOME FINAL POINTS ABOUT SCALING...

cont’d...

This document has focused on scaling of General subjects. Applied subjects and completed Vocational Education and Training (VET) qualifications at Certificate III level and higher may also be included as one of the five inputs into an ATAR. In the scaling process:

- Each Applied subject will have scaled scores based upon the letter grade awarded in the subject.
- Each VET level (Certificate III, Certificate IV and Diploma) will have a single scaled score, and this will be independent of the area of study, duration, mode of assessment or study provider of the VET qualification.

QTAC will make available the scaling reports for General subjects, Applied subjects and completed VET courses in December 2020 and then yearly. It will not be possible to know before December 2020 how individual subjects will scale.

The purpose of making the scaling reports available is to ensure openness, accountability and transparency of the ATAR calculation process. It is not for the purposes of creating predictive ATAR calculators or in any way to suggest that a subject (or group of subjects) is better than another.

In particular, the reader is reminded that the intent and rigour of any two General subjects is comparable even if the mode of learning and curriculum pedagogy is different and unique to that subject. Take for example these two subjects – Physics and Ancient History:

Physics: “The purpose of senior Science subjects in Queensland is to introduce students to a scientific discipline. Students will be required to learn and apply aspects of the knowledge and skill of the discipline (thinking, experimentation, problem-solving and research skills), understand how it works and how it may impact society.”

Ancient History:“A course of study in Ancient History empowers students with multi-disciplinary skills in analysing textual and visual sources, constructing arguments, challenging assumptions, and thinking both creatively and critically. Ancient History students become knowledge creators, productive and discerning users of technology, and empathetic, open-minded global citizens.”
RECAP AND SOME FINAL POINTS ABOUT SCALING...

cont’d...

Across both Physics and Ancient History it is the range of results achieved in these subjects that can be significantly different, rather than the perception that one subject may be “easier” or “harder” than the other. This is especially borne out in a review of the syllabuses for these subjects which will show comparable intent and rigour.

Lastly, in this document QTAC has used subject terminology that will be applicable for students completing Year 12 and qualifying for ATARs in 2020. As part of Queensland’s move to adopt national curriculum, the following Mathematics subjects will be redesigned as follows:

- Mathematics A will become General Mathematics
- Mathematics B will become Mathematical Methods
- Mathematics C will become Specialist Mathematics

The Authors

Phillip Anthony, Chief Technical Officer

Phillip holds a range of postgraduate qualifications in international relations, Asian politics, commercial computing and administrative studies. Phillip has been with QTAC for over 25 years and has a wealth of technical knowledge unrivaled in the tertiary admissions sector. As Chief Technical Officer, Phillip ensures that QTAC systems deliver institutional admissions requirements with maximum efficiency and innovation.

Marco Lombardi, Statistician

Marco holds a master’s degree in biostatistics and experimental statistics and a bachelors degree in statistics and information management. He has worked since 2012 as a statistical analyst in Italy and now Australia. Marco is responsible for the technical processing for the calculation of the ATAR for Queensland secondary students and will be managing the documentation of QTAC’s ATAR processes, appeals and stakeholder communications.

www.qtac.edu.au/atar-my-path

Information accurate as at July 2018, please check website for updates.

© QTAC Ltd